Home

QuantumBirds
The navigational and sensory abilities of night-migratory songbirds, travelling alone over thousands of kilometres, are absolutely staggering. The successful completion of these magnificent voyages depends crucially on the birds’ ability to sense the Earth’s magnetic field. Exactly how this magnetic sense works is one of the most significant open questions in biology and biophysics. The experimental evidence suggests something extraordinary. The birds’ magnetic compass sensor seems to rely on coherent quantum phenomena that indirectly allow magnetic interactions a million times smaller than kBT (Boltzmann’s constant multiplied by temperature) to be detected in biological tissue.

QuantumBirds
brings together quantum physics, spin chemistry, behavioural biology, biochemistry, and molecular biology in a unique, ambitious, imaginative and genuinely synergetic research programme that will prove whether the primary magnetic detection event occurring in the birds’ retinas involves the quantum spin dynamics of photochemically formed radical pairs in cryptochrome proteins.

Share by: